Manuscript Viewer: Non Flash Version
Mathematics: The Chapters of Algebra (p. 12a)
Michael dedicates a long portion of his mathematical text to the subject of algebra. Here, he credits the invention of algebra to an Arabic scholar of the same name—Alzebran, or Algebra. Although mistaken about the origins of the word, Michael was correct about the Arabic roots of algebra. The fact that Michael devotes so much space to algebra points to his genuine curiosity about mathematics and its underlying theory. Toward the bottom of the page, he lists six algebraic equations. Michael describes them in words because modern algebraic notation did not yet exist.
See enlargement:
+ Ihesus + Quisti chapitoli li qual sera spezifichadi de sotto son chapitoli de l'Alzibran, che fu uno saraxin lo qual chosi nomen avea, zoe alzebra, lo qual truova li ditti 6 e per li ditti chapitulli se puo tro- var zaschaduna raxion de radixe. E quando tu voi truovar alguna per li ditti 6 chapitulli e te bexogna chonponer quella o quele raxion che tu vuol truovar per tal magnera che la raxion vegna al muodo de uno de questi chapitulli, chomo ve sera dechiarado qui avanti. Sapi che questi 6 chapitulli i primi, che son 3, sono dichonpoxitti e li oltri 3 sono chonpoxitti, e fase le sotil raxion maistrevele de nomeri per essi a chi se dotti a saverle ben adure, onde elli schomenza chossi. Primo chapittolo Segondo Terzo Quarto chapitulo Quinto chapitolo Sextto chapitolo chosa ingual a numero zenso ingual a numero zenso ingual a chosa zenso e chossa ingual a nomero zenso e nomero ingual a chosa chosa e numero ingual a zenso Mo' nottaro la natura de ttuti 6 chapitolli qui chon esenpio, chomen- zando dal primo, el qual dixe "chosa ingual a numero". Sempre quando e fatta la edechazion e quel romagna cho- sa ingual a numero, se die partir lo numero per le chose e que- lo che ne vien e numero e tanto val la chossa. Exenpio. //
+ Jesus + 9.9.05 JW These chapters that will be specified below are the chapters of Alzibran, who was a Saracen who had that name, that is algebra, who found these 6 chapters and through these chapters you can find every problem of roots. And when you want to find anything by these 6 chapters, it is necessary for you to compose that or those problems that you want to find in such a way that the problem is put in the form of one of these chapters, as will be expressed to you below. Know that of these 6 chapters, the first, which are 3, are not composite and the other 3 are composite, and the simple problems make those who learn them adept masters of numbers, whence they begin like this: First chapter - unknown equal to a number Second - squared unknown equal to a number Third - squared unknown equal to an unknown Fourth chapter - squared unknown and unknown equal to a number Fifth chapter - squared unknown and number equal to an unknown Sixth chapter - unknown and number equal to a squared unknown Now I will note here the nature of all of the six chapters with examples, beginning with the first, which says "unknown equal to a number." Whenever the equation is made and it works out to an un- known equal to a number, you should divide the number by the unknown and what results is a number and that is the value of the unknown. Example: